Q : Prove this trigonometric identity
sin 3x +sin 2x - sin x = 4 sin x cos (x/2) cos (3x/2)
SOLUTION:
L.H.S. = sin3x + (sin 2x - sin x)
=> 2 * sin (3x/2) * cos (3x/2) + 2 * cos (3x/2) *sin (x/2)
=> 2 * cos (3x/2) [sin (3x/2) + sin (x/2) ]
=> 2 * cos (3x/2) [2 * sin (x) * cos (x/2) ]
=> 4 * cos (3x/2) sin x cos (x/2) ==> R.H.S. (Proved)
Link to Y/A
Wednesday, January 27, 2010
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment